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Solvable aggregation-annihilation processes with greater than two components

Ligen Zhang1 and Z. R. Yang1,2
1Department of Physics and Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China

2
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We study the aggregation-annihilation processes involving three or more kinds of distinct monomers species
based on mean-field theory. We propose several solvable models in which irreversible bonding occurs only
between similar species and annihilation occurs only between dissimilar species. Under constant aggregation
and annihilation reaction rates, the exact solutions of these models are obtained. These analytical solutions
show that the kinetic evolution behaviors of each species are quite different. They are scaling or nonscaling
depending conclusively on all reaction rates and initial mass distribution of each of the reactants.
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I. INTRODUCTION

Aggregation processes are of widespread interest in m
branches of physics, chemistry, and biology. Typically, a
gregation processes can be described by the reaction sc
@1–3,23#

Ai1Aj ——→
K~ i , j !

Ai1 j .

HereAi is a cluster consisting ofi monomers, theAi cluster
andAj cluster aggregate together with reaction rateK( i , j ),
resulting a larger clusterAi1 j . In recent years, the kineti
investigation of aggregation processes have made cons
able developments@4–12#. However, most of the researc
works focus on the aggregation, annihilation, and fragm
tation for one species@3,13–16#, and an exact solution fo
that species, in one dimension, has been obtained@17–22#.
Few research works consider the aggregation-annihila
for two species @22–24#. In this paper, we study the
aggregation-annihilation processes in a diffusion-limited
action withl.2 species. These processes may occur in m
systems of physics, chemistry, and biology, such as the
cesses of dress ore consisting of many kinds of elements
organic chemical reactions forming compound material,
well as the processes of leavening with lots of fungi. Beca
the solution of this problem is much more complicated th
that for one and two species, we propose several solv
simplified models. In our model, according to@23#, the irre-
versible aggregation reaction occurs only between sim
speciesAi1Aj→Ai1 j , and the annihilation reaction occu
only between dissimilar species Ai1 j1Bi→Aj ,
Ai1Bi1 j→Bj . In general, an annihilation reaction may o
cur between any two distinct species. We especially cons
the following interesting special case: if various distin
species are denoted byAl , the annihilation reaction occur
only between speciesAl andAl61 ~l51,2,3,...!. According to
our work, it is found that under constant reaction rates
aggregation and annihilation the kinetic evolution behavi
of reactants crucially depend on all reaction rates and in
mass distributions of each reactants.
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The outline of this paper is as follows. In Sec. II, w
discuss a special three-species aggregation-annihila
model in which the annihilation reaction occurs between s
ciesA1 andA2, as well as between speciesA2 andA3, and
there is no annihilation reaction between speciesA1 andA3.
We also give some special solutions. In Sec. III, we descr
a many species aggregation-annihilation model.

II. THREE-SPECIES AGGREGATION-ANNIHILATION
MODEL

In this model, our investigation is based on the mean-fi
theory and thus the spatial fluctuations of reactants are
nored. We have supposed three kinds of speciesA1, A2, and
A3, each species coalesces with a constant aggregation
and annihilation processes occur only betweenA1 andA2, as
well as betweenA2 andA3. For simplicity, we set the rate o
aggregation processes the same for each species and e
one, and the rates of annihilation processes are all equalJ.
If a1k(t), a2k(t), and a3k(t) denote, respectively, the con
centrations ofA1-, A2-, and A3-clusters consisting ofk
monomers, the corresponding rate equations for
aggregation-annihilation system can be written as@23#

da1k
dt

5 (
i1 j5k

a1i ,a1 j22a1k(
j51

`

a1 j

1JS (
p5q1k

a1pa2q2a1k(
j51

`

a2 j D , ~1!

da2k
dt

5 (
i1 j5k

a2ia2 j22a2k(
j51

`

a2 j1JS (
p5q1k

a2pa1q

2a2k(
j51

`

a1 j D 1JS (
p1q5k

a2pa3q2a2k(
j51

`

a3 j D ,
~2!
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da3k
dt

5 (
i1 j5k

a3ia3 j22a3k(
j51

`

a3 j

1JS (
p5q1k

a3pa3q2a3k(
j51

`

a2 j D . ~3!

For the monodisperse initial conditions

alk~0!5Al0dk1 , l51,2,3, ~4!

these initial conditions mean that for each species there
exists one-monomer cluster whose concentration equalsAl0
at t50; the rate equations can be solved by means of
ansatz@1#

alk5Al~al !
k21, l51,2,3 ~5!

whereAl(t) andal(t) are dependent on time. Utilizing an
satz~5!, we rewrite Eqs.~1!–~3! as follows:

da1
dt

5A1 , ~6!

dA1
dt

52
2A1

2

12a1
1JA1A2S a1

12a1a2
2

1

12a2
D , ~7!

da2
dt

5A2 , ~8!

dA2
dt

52
2A2

2

12a2
1JA2A1S a2

12a2a1
2

1

12a1
D

1JA2A3S a2
12a2a3

2
1

12a3
D , ~9!

da3
dt

5A3 , ~10!

dA3
dt

52
2A3

2

12a3
1JA3A2S a3

12a3a2
2

1

12a2
D . ~11!

The initial conditions corresponding to Eq.~4! are rewritten
as

al50, Al5
dal
dt

5Al0 , l51,2,3 at t50. ~12!

Introducing new variables

a l5~12al !
21, l51,2,3, ~13!

Eqs.~6!–~11! become

d2a1

dt2
52

J

a11a221

da1

dt

da2

dt
, ~14!

d2a2

dt2
52

J

a21a121

da2

dt

da1

dt
2

J

a21a321

da2

dt

da3

dt
,

~15!
ly

n

d2a3

dt2
52

J

a31a221

da3

dt

da2

dt
, ~16!

and corresponding initial conditions

a l51,
da l

dt
5Al0 , l51,2,3 at t50. ~17!

Equations~14!–~16! are what we want to solve.
Obviously, there are two integrals from Eqs.~14!–~16!;

they are, respectively,

a11a32a25~A101A302A20!t11, ~18!

da1

dt

da2

dt

da3

dt
5A10A20A30~a11a221!2J~a21a321!2J.

~19!

In order to find an explicit solution fora1, a2, anda3, we
consider some special symmetrical cases. These cases c
solved analytically.

~a! a15a35
1
2a2. In this case, we assumea15a3

52a221, A15A352A2 and set the initial data

a15a351, a252, A105A3052A20,

da1

dt
5A10,

da3

dt
5A30,

da2

dt
54A20 at t50.

~20!

Substitutinga15a351/2a2 into Eqs.~14!–~16!, one obtains

d2a1

dt2
52

2J

3a121 S da1

dt D 2, ~21!

d2a2

dt2
52

J
3
2a221

S da2

dt D 2, ~22!

d2a3

dt2
52

2J

3a321 S da3

dt D 2. ~23!

Their solutions are

a15
1
3 ~112F !5a3 , ~24!

a25
2
3 ~112F !, ~25!

F5@A20~2J13!t11#~3/2J13!. ~26!

Then, we find the concentrations ofA1-, A2-, andA3-clusters
are, respectively,

a1k~ t !5a3k~ t !518A20F
~2/3!J~112F !22S 12

3

112F D k21

,

~27!

a2k~ t !59A20F
2~2/3!J~112F !22S 12

3

2~112F ! D
k21

.

~28!

The asymptotic behaviors for the cluster-mass distributi
can be easily found at a long time limit
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a1k~ t !5a3k~ t !5 9
2A20@A20~2J13!t#212~3/2J13!exp~2x!,

~29!

a2k~ t !5
9

4
A20@A20~2J13!t#212~3/2J13!expS 2

x

2D .
~30!

They are valid in the scaling region

t@1, k@1, x5
3k

2
@A20~2J13!t#2~3/2J13!5finite.

~31!

These results indicate that for the given initial data the e
lutions of cluster concentrations come in a scaling regime
a long time limit. The average mass of clusters increa
with time. If we useS(t) to denote the characteristic mass
an aggregation system, the cluster concentrationck(t) of ag-
gregates at long time can be written in the following scal
form @5#;

ck~ t !.t2Wf ~k/S„t…!, S~ t !}tZ. ~32!

Theck(t) denotes the concentration ofk mers of any type of
species. Calculating the 0th and 1th moments of cluster-m
distribution, one can obtain the power-law expressions
the total number of clustersN(t) and the total mass of clus
tersM (t) at long time

N~ t !5 (
k51

`

ck~ t !}t
2l, ~33!

M ~ t !5 (
k51

`

kck~ t !}t
2m. ~34!

Substituting the scaling form~32! for the cluster-mass distri
bution into Eqs.~33! and ~34!, one finds the exponent rela
tions

l5W2Z, m5W22Z. ~35!

From Eq.~29! or ~30!, one can find all these exponents

W5
2J16

2J13
, Z5

3

2J13
, l51, m5

2J

2J13
. ~36!

This result indicates thatW, Z, andm are dependent on th
value of rateJ. They are not universal constants independ
of reaction processes.

In addition, from Eqs.~29! and ~30! we see that the con
centration ofA1- andA3-clusters is much less than the one
A2-clusters at long time. This difference is related to t
initial mass distribution. From Eqs.~29!, ~30!, and~34!, one
can easily find the initial total mass ofA1, A2, andA3 spe-
cies. They are, respectively,

M1~0!52A20, M2~0!54A20, M3~0!52A20.

The initial total mass ofA2 species is two times as large a
that ofA1 or A3 species. The interplay between aggregat
and annihilation makes the species with a larger initial to
-
at
s

g

ss
r

t

n
l

mass decay slowly. It can be seen that initial mass distri
tion strongly affects the evolution behavior of reactants
long time.

~b! a15a3Þa2. This case is also exactly solvable. Th
initial conditions are still expressed by Eq.~17!, but an ad-
ditional conditionA105A30 is given. Substituting the condi
tion into Eqs.~18! and ~19!, one obtains

2a12a25~2A102A20!t1152g1t11, ~37!

S da1

dt D 2 da2

dt
5A10

2 A20~a11a221!22J, ~38!

whereg151/2(2A102A20). If we assumeg1.0, the asymp-
totic solutions fora1 andda2/dt are given by

a1.g1t,
da2

dt
.Cg1~122J!21~g1t !

22J at t@1, ~39!

whereC5A 10
2 A20g 1

23. Now, we discuss the three differen
cases, respectively.

~i! When 0,J,1/2. One obtains scaling solutions

a1k5a3k5~g1t
2!21exp~2x!, ~40!

a2k5g1~122J!2C21~g1t !
2J22exp~2y!, ~41!

corresponding two different scaling variables

x5k~g1t !
21 for A1-,A3-clusters, ~42!

y5~122J!C21k~g1t !
2J21 for A2-clusters. ~43!

Then we have two kinds of exponents

W52, Z51, l51, m50 for A1-,A3-clusters,
~44!

W5222J, Z5122J, l51, m52J,

for A2-clusters, ~45!

and the total mass ofA1-, A2- andA3-clusters

M15M35 (
k51

`

ka1k5A1~12a1!
225

da1

dt
5g1 at t@1,

~46!

M25 (
k51

`

ka2k5A2~12a2!
225

da2

dt

5g1C~g1t !
22J at t@1. ~47!

One can see that at a long time limit the mass ofA1- and
A3-clusters remains constant and the mass ofA2-clusters
vanishes. This is natural. BecauseA1 species andA3 species
both annihilateA2 species at the same time, and makeA2

species decay quickly. After enough long time,A1 species
andA3 species coalesces individually. But, from Eqs.~40!
and~41!, one can also see that whent@1 andk!(g1t)

122J

the concentrationa2k may be much greater thana1k; small
massA2-clusters dominate over the corresponding ones
A1-clusters.
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~ii ! When J51/2. The evolution behaviors ofA1- and
A3-clusters are still described by Eq.~40!, while the evolu-
tions of concentration, total number of clusters, and to
mass for theA2-clusters become, respectively,

a2k~ t !5C21t21~ ln t !22exp~2y!, y5k~c ln t !21,
~48!

N2~ t !5t21~ ln t !21, ~49!

M2~ t !5Ct21. ~50!

The logarithmic corrections appear in theA2-clusters con-
centration and its 0th moment. This means that a sm
change of the annihilation rate may strongly change the
cay of theA2-species.

~iii ! WhenJ.1/2. It corresponds to an strong annihilatio
case. Thea2 becomes a decreasing function of time. If a
suminga2 approaches a steady stable valuea2` at the long
time limit, one can obtain the asymptotic solution ofa2 by
solving exactly Eqs.~37! and ~38!.

Substituting (da1/dt)51/2(da2/dt)1g1 into Eq. ~38!
and settingF53a212g1t11, one can obtain an implicit so
lution of a2

E
2

F

@F~V!21#21dV52g1t, ~51!

here

F5@F11~F1
221!1/2#1/3]1@F12~F1

221!1/2#1/3], ~52!

F1511C3322J22F22J, ~53!

and the asymptotic solution fora2(t) at t@1

a25a2`2
3C

2J21
~g1t !

122J1••• , ~54!

a2`511
1

3 E
2

`

$12@F~V!21#21%dV. ~55!

Thus, we have a scaling solution forA1- andA3-clusters as
Eq. ~40! and the following nonscaling solution fo
A2-clusters:

a2k~ t !.
3Cg1~g1t !

22J

a2`~a2`21! S 12
1

a2`
D k. ~56!

It turned out that a large annihilation rate results in a f
decay ofA2-clusters and the scaling description for the ev
lution behavior ofA2-clusters breaks down completely.

~c! a1Þa2Þa3. In the general asymmetrical case, Eq
~18! and~19! are still satisfied exactly, but one cannot find
exact analytical solution fora1, a2, anda3. When the initial
masses ofA1 species andA3 species,A10 andA30, are much
the same, one can imagine that speciesA2 is divided into two
parts. One part reacts with speciesA1 and another with spe
cies A3. If we again assume that (A101A302A20).0, Eq.
~18! can be recasted into the following two equations:

a12e1a25~A102e1A20!t112e1 , ~57!
l

ll
e-

-

t
-

.

a22e2a25~A302e2A20!t112e2 , ~58!

where

e15
A10

A101A30
, e25

A30

A101A30
. ~59!

From Eqs.~57!, ~58!, and~19!, one can obtain the asymptoti
solutions fora1(t), a2(t), anda3(t) at t@1

a1.~A102e1A20!t5g2t, ~60!

a3.~A302e2A20!t5g3t, ~61!

a2.C̄~122J!21~gt !122J, ~62!

where

C̄5A10A20A30g
23 g35g2g3 . ~63!

Corresponding cluster-mass distributions:
for A1-clusters

a1k~ t !5~g2t
2!21exp~2x1! x15k~g2t !

21, ~64!

for A3-clusters

a3k~ t !5~g3t
2!21exp~2x2! x35k~g2t !

21, ~65!

for A2-clusters

a2k~ t !5g~122J!2C21~gt !2J22exp~2x3!

x35~122J!C̄21K~gt !2J21 J, 1
2 , ~66!

a2k~ t !5~C̄t !21~ ln t !22exp~2x4!

x45k~C̄ ln t !21 J5 1
2 , ~67!

and whenJ.1/2, the nonscaling solution forA2-clusters is
similar to Eq.~56!.

These approximation results coincide with those obtain
by numerical computation to a certain degree of precisio

All preceding calculations for case~B! and case~C! are
performed under the condition in which the value of everyg
is greater than zero. When allg are less than zero, the evo
lution behaviors of theA2 species are scaling and the beha
iors of A1 andA3 species are scaling or nonscaling, depen
ing on the rate of the annihilation reaction. According to t
definition ofg, the magnitude ofg corresponds to the differ
ence of initial total mass among reactants. The effect of
value ofg on the evolution behavior of each species rep
sents one of initial total mass. Therefore, we conclude t
for a system with a three-species aggregation-annihila
reaction, the kinetic behaviors of the system depend con
sively on the aggregation rate, annihilation rate, and the
tial mass distribution of each reactant.

III. MANY SPECIES AGGREGATION-ANNIHILATION
MODEL WITH CONSTANT REACTION RATE

We suppose that there aren distinct species in a system
Each species aggregates itself, and any two kinds of dist
species annihilate each other. We assume again all aggr



qu

se

-

g
ac-
tes.
del,
pe-
on-
on
e
eral
ses
han
el.
an
u-
our
are
tial

1446 55LIGEN ZHANG AND Z. R. YANG
tion rates are equal to one and all annihilation rates are e
to J. If n cluster-mass distributions are denoted byalk , (l
51,2,..,n) the rate equations for then species are given by

dalk
dt

5(
i1 j

ali al j22alk(
j51

`

al j

1J(
m51

n S (
p5q1k

alpamq2alk(
j51

`

amjD ,
mÞ l , l51,2,...,n, m51,2,...,n. ~68!

For the monodisperse initial conditions

alk~0!5Al0dk1 , Al05const, l51,2,...,n, ~69!

Eqs.~68! can be reduced in terms of ansatz

alk~ t !5Al~al !
k21, l51,2,...,n. ~70!

Introducing new variables

a l5~12al !
21 l51,2,...,n, ~71!

into Eqs.~70!, yields

d2a l

dt2
52 (

m51

n
J

a l1am21

da l

dt

dam

dt
,

mÞ l , l51,2,...,n, ~72!

with initial conditions

a l51,
da l

dt
5Al0 at t50. ~73!

One can easily obtain one integral of Eqs.~72!

)
l

da l

dt
5)

l
Al0)

l
)
m

~a l1am21!2J/2, ~74!

but cannot find eacha l as an explicit function of time in
general.

Now, we consider the symmetrical case, i.e.,Al05A0 ,
al5a for all l . The solutions ofa(t) and ak(t) for each
species are, respectively,
al a~ t !5 1
2 ~11C!, ~75!

ak~ t !54A0~11C!22C2~n21/2!JS C21

C11D
k21

. ~76!

C5$11@21~n21!J#A0t%
@2/21~n21!J#. ~77!

At long time limit the concentration is

ak~ t !.4A0$@21~n21!J#A0t%
212@2/21~n21!J#exp~2x!.

~78!

It is valid in the scaling region

k@1, t@1,

x52k$@21~n21!J#A0t%
2@2/21~n21!J#5~finite!. ~79!

Settingn52, one obtains the solution for a symmetrical ca
in Ref. @23#. Whenn53, we have exponents

W5
21J

11J
, Z5

1

11J
, l51, m5

J

11J
. ~80!

Comparing the exponents in Eqs.~36! and~80!, one can see
that these exponents, exceptl, are all dependent on the re
action rate, and for a given value ofJ, the value ofZ in Eq.
~36! is greater thanZ in Eq. ~80! and the value ofm in Eq.
~36! is less thanm in Eq. ~80!. These differences amon
exponents represent the effect of different annihilation re
tion models on the kinetic evolution behaviors of aggrega
In the general three-species aggregation-annihilation mo
annihilation reaction occurs between any two distinct s
cies. While in the special three-species aggregati
annihilation model in Sec. II, there is no annihilation reacti
between theA1 species andA3 species. It turns out that th
characteristic mass of clusters for each species in the gen
three-species aggregation-annihilation model increa
slowly and the total mass of all clusters decayes faster t
in the special three-species aggregation-annihilation mod

For general asymmetric cases, it is difficult to find
analytical solution for each cluster concentration. The n
merical computation for a system with three species or f
species show that the kinetic behaviors of the system
very sensitive to the value of the reaction rate and the ini
mass distribution.
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