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Solvable aggregation-annihilation processes with greater than two components
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We study the aggregation-annihilation processes involving three or more kinds of distinct monomers species
based on mean-field theory. We propose several solvable models in which irreversible bonding occurs only
between similar species and annihilation occurs only between dissimilar species. Under constant aggregation
and annihilation reaction rates, the exact solutions of these models are obtained. These analytical solutions
show that the kinetic evolution behaviors of each species are quite different. They are scaling or nonscaling
depending conclusively on all reaction rates and initial mass distribution of each of the reactants.
[S1063-651%97)08502-4

PACS numbd(s): 05.70.Ln, 82.20-w, 82.35:+t

[. INTRODUCTION The outline of this paper is as follows. In Sec. Il, we
discuss a special three-species aggregation-annihilation
Aggregation processes are of widespread interest in manyodel in which the annihilation reaction occurs between spe-
branches of physics, chemistry, and biology. Typically, agcies A* and A?, as well as between speciég and A%, and
gregation processes can be described by the reaction schethere is no annihilation reaction between spediésand A%,
[1-3,23 We also give some special solutions. In Sec. IlI, we describe
a many species aggregation-annihilation model.
K(@i.j)
Ai +A] — Ai+j .
Il. THREE-SPECIES AGGREGATION-ANNIHILATION
. L . MODEL
HereA, is a cluster consisting af monomers, thé\; cluster
andA, cluster aggregate together with reaction i@, ), In this model, our investigation is based on the mean-field

resulting a larger clusted; ;. In recent years, the kinetic . . .
investigation of aggregation processes have made consideqj—eory and thus the spatial fluciuations of reactants are ig-

able developmentf4—12). However, most of the research ”g’red- We have supposed three kinds of speaies”, and

works focus on the aggregation, annihilation, and fragmen®* + €ach species coalesces with a constant aggregzatlon rate
tation for one specief3,13—16, and an exact solution for @nd annihilation processes occur only betwserandA?, as

that species, in one dimension, has been obtajt@e-23. well as bgtweem\ andA”. For simplicity, we set the rate of

Few research works consider the aggregation-annihilatioA9gregation processes the same for each species and equals
for two species[22—24. In this paper, we study the One, and the rates of annihilation processes are all equal to
aggregation-annihilation processes in a diffusion-limited reJf ai(t), ax(t), and as(t) denote, respectively, the con-
action withl >2 species. These processes may occur in mangentrations of A%, A, and A>clusters consisting ok
systems of physics, chemistry, and biology, such as the prdnonomers, the corresponding rate equations for this
cesses of dress ore consisting of many kinds of elements, tfggregation-annihilation system can be writterj 28

organic chemical reactions forming compound material, as

well as the processes of leavening with lots of fungi. Because

the solution of this problem is much more complicated than dayy

that for one and two species, we propose several solvable T Z ai,a
simplified models. In our model, according[i®3], the irre-

versible aggregation reaction occurs only between similar
speciesA;+A;—A;j, and the annihilation reaction occurs +J
only  between dissimilar  species A, j+B;—A;,

Ai+B;,;—B,. In general, an annihilation reaction may oc-

cur between any two distinct species. We especially consider .
the following interesting special case: if various distinct dag

species are denoted WY, the annihilation reaction occurs T:iﬂzzk aZiaZj_Zazk;l ap;+J
only between species' andA'*! (1=1,2,3,..). According to

©

i 2a1kj21 alj

if7=k

> QA1pazq— ai, a2j> : 1
p=q+k j=1

> azpa1
plark

our work, it is found that under constant reaction rates of * *
aggregation and annihilation the kinetic evolution behaviors _aZkz apj | +J E aZpaSq_aZkz asj),
of reactants crucially depend on all reaction rates and initial =1 P+a=k =1

mass distributions of each reactants. 2
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dagk
at 2 a3la3j 2a3k2 ag;
i+j=

o0
j X a3pasq_a3k2 ay; |- ©)
p=q+k =1

For the monodisperse initial conditions

these initial conditions mean that for each species there only
exists one-monomer cluster whose concentration equgls

1443
d?a J das da
r=- =, (16)
dt a3+ ay— 1 dt dt
and corresponding initial conditions
da|
a|=1, W:AIO, |:l,2,3 att=0. (17)

Equations(14)—(16) are what we want to solve.
Obviously, there are two integrals from Edq44)—(16);

they are, respectively,

(18)

a1+ Az~ = (A10+A30_A20)t+ 1,

at t=0; the rate equations can be solved by means of an

ansatz1]

a|k:A|(a|)kil, 1=1,2,3 (5)

whereA(t) anda(t) are dependent on time. Utilizing an-

satz(5), we rewrite Eqs(1)—(3) as follows:

dal_A 6
TS (6)
dA; 2A2 A A& 1 .
dt . 1-a, Y2 1-aa, 1-a, ™
da,
T (8)
dA, 2A; a, 1
_:—_J,— P p—
dt 1-a, Iz l-a,a; 1-a
L IAA 2 ! 9
28 1-a,a; 1—ay)’ ©)
das_ 10
TS (10
dAg 2A3 I "
dt 1-a 1_a, Vhehe l-aza, 1—a,/ (1)

The initial conditions corresponding to E@l) are rewritten
as

day
a=0, A= a0 =A,, =123 att=0. (12
Introducing new variables
a=(1—a)" % 1=1,23, (13
Egs.(6)—(11) become
d? J da; d
621:_ — 7% (14)
dzafz_ J daz da]_ J d012 dafg
dtz o a2+a1—1 WF a2+a3 1WF,
(15)

dal da2 da'3

—-J _ —-J
“dt dt dt (aptaz=1)".

(19

=A10A2A30( a1+ a— 1)

In order to find an explicit solution fog,, a,, andas, we

consider some special symmetrical cases. These cases can be

solved analytically.

(@ ay=az=3a,. In this case, we assum@;=a;

=2a,— 1, A;=Az=2A, and set the initial data
a1= 3= 1, a2=2, AlOZASO: 2A20,
dal da3 da2
W:Alo' W:AEBO' W:4A20 at t=0.
(20
Substitutinga; = az=1/2a, into Egs.(14)—(16), one obtains
d2a1 2J dal 2
7 =— —- . (21)
d2a2 J (daz) 2
7 =— - (22
dt Sa,— dt
d2a3 2J da3 2
== - (23
dt 3(13_ 1 t
Their solutions are
a;=3(142F)=as, (29
a=5(1+2F), (25
F=[Ax(23+3)t+1]32+3), (26)

Then, we find the concentrations Af-, A%, andA3-clusters
are, respectively,

k-1
_ _ (2/3)3 —2[1_
a(t) =ag(t)=18AxF 7" (1+2F) (1 112,
(27)
3 k—1
_ ~(2/3)3 2l
a(1) = 9A,F ~ (9914 2F) (1 2(1+2F)>
(28)

The asymptotic behaviors for the cluster-mass distributions
can be easily found at a long time limit
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ap(t)=ag(t)=3A,J Ay(2J+3)t] 1~ 2 exp —x), mass decay slowly. It can be seen that initial mass distribu-
(29  tion strongly affects the evolution behavior of reactants at
long time.
9 1@ X (b) e;=az#a,. This case is also exactly solvable. The
2ak(t) = 7 Aad Axg(23+ 3)t] exg — 5 |- initial conditions are still expressed by E(.7), but an ad-
(30) ditional conditionA;o= A3 is given. Substituting the condi-
tion into Egs.(18) and(19), one obtains
They are valid in the scaling region
y g re 2ay—ar=(2A1- At +1=2y,t+1,  (37)
3k
t>1, k>1, x=—= [Ay(2J+3)t] @3 =finite. da;\? da,
2 1) T2 a2 _ay-2J
(31) at | dt AlAz( a1t a,—1)" =, (38

These results indicate that for the given initial data the evoWherey;=1/2(2A,0—Ay). If we assumey;,>0, the asymp-
lutions of cluster concentrations come in a scaling regime afotic solutions fora; andda,/dt are given by

a long time limit. The average mass of clusters increases q

with time. If we useS(t) to denote the characteristic mass of a;=yit, ﬁzcyl(l_zj)—l( y)" 2 att>1, (39
an aggregation system, the cluster concentratjgt) of ag- dt

regates at long time can be written in the following scalin . .
fgorlg [5]; g g gwhereC=A§0A20y1‘3. Now, we discuss the three different

cases, respectively.
c(t) =t~ WE(kIS(t)), S(t)t?. (32) (i) When 0<J<1/2. One obtains scaling solutions

— — 2y—1 _
Thec,(t) denotes the concentration loimers of any type of ag=ag= (71t "exp(—x), (40)
species. Calculating the Oth and 1th moments of cluster-mass _ 21 2]—2
distribution, one can obtain the power-law expressions for = 71(1=2)°C(71t) exp—Y), (4D)
the total number of clustemd(t) and the total mass of clus-

. corresponding two different scaling variables
tersM(t) at long time P g g

. x=k(y,t)"1 for Al- A3-clusters, (42
— -\
N(t)_gl Cr(t)oet™%, (33 y=(1—-2J)C k(y,1)?~1 for A2-clusters. (43
o Then we have two kinds of exponents
M= 2, kedt)=t ~. B9 w=2, z=1, \=1, =0 for AL A%clusters,
(44)
Substituting the scaling forrt82) for the cluster-mass distri-
bution into Egs.(33) and (34), one finds the exponent rela- W=2-2J, Z=1-2J, \=1, u=2J,
tions

for A%-clusters, (45)

A=W-Z, =W-2Z. 35
- (35) and the total mass &&'-, A% and A3-clusters

From Eq.(29) or (30), one can find all these exponents

- _, da
2]1+6 3 2] Ml:MSZkZ]_ ka.lk:Al(l_al) :F:’yl at t>1,
W=s3r3 “Tagvs ML #Tgg (9 (46)
This result indicates that/, Z, and u are dependent on the = _, day
value of ratel. They are not universal constants independent M2= k§=:1 Kag=Az(1-ap) TS
of reaction processes.
In addition, from Eqs(29) and (30) we see that the con- =v,C(yst)" % att>1. 47

centration ofA’- andA3-clusters is much less than the one of

A2clusters at long time. This difference is related to theOne can see that at a long time limit the massAdf and
initial mass distribution. From Eq$29), (30), and(34), one A3-clusters remains constant and the massAéfclusters
can easily find the initial total mass &, A%, andA3 spe-  Vanishes. This is natural. Becaust species and\® species

cies. They are, respectively, both annihilateA? species at the same time, and make
species decay quickly. After enough long tin#e: species
M1(0)=2A55, My(0)=4A,, M3(0)=2A,. and A3 species coalesces individually. But, from E¢40)

and(41), one can also see that wher1 andk<(y,t)} %
The initial total mass of\? species is two times as large as the concentratiora,, may be much greater thaa,; small
that of A or A% species. The interplay between aggregationmassA2-clusters dominate over the corresponding ones of
and annihilation makes the species with a larger initial totalA-clusters.



55 SOLVABLE AGGREGATION-ANNIHILATION PROCESSE . .. 1445

(i) When J=1/2. The evolution behaviors oA~ and apy—epa,=(Azo— €At +1— €, (58)
A3-clusters are still described by E@i0), while the evolu-
tions of concentration, total number of clusters, and totawhere

mass for theA?-clusters become, respectively,
A10 A30

2a)=C MY ey, y-kenn T At A 2 Aot Agy 59
48
From Eqs(57), (58), and(19), one can obtain the asymptotic
Ny(t) =t~ *(Int)~*, (490 solutions foray(t), ay(t), andas(t) att>1

M,(t)=Ct L. (50) a;=(Ap—e1A)t= yst, (60)

The logarithmic corrections appear in té-clusters con- a3=(Azg— A0t = v3t, (61
centration and its Oth moment. This means that a small _

change of the annihilation rate may strongly change the de- ap;=C(1-23) " }(yt)1 %, (62

cay of theA2-species.

(iii ) WhenJ=>1/2. It corresponds to an strong annihilation Where
case. Thex, becomes a decreasing function of time. If as- - 3 3
suming a, approaches a steady stable valye at the long C=A1A20A30Y Y = 727s- (63)
time limit, one can obtain the asymptotic solution ®f by
solving exactly Eqs(37) and(398).

Substituting fea,/dt)=1/2(da,/dt) + v, into Eq. (38
ﬁjr;%r?eg;ingd):SaZJrZyltJrl, one can obtain an implicit so- an(t)=(yst?) texp—x1) xi=k(yt)"t (64

@

Corresponding cluster-mass distributions:
for Al-clusters

for AS-clusters
(O]
J, tFov-ar-tav=zya (51 ax()=(7st) te—x0)  Xa=k(y20) L (69

for A’-clusters
here

_ _ 2~—1 2J-2 _
F=[F1+ (F2— 1)V Y3 1 [F;— (F2— 1) 1219, (52 82d1)= y(1=20)°C )™ Fexp — x)

X3=(1—-2J)C K(y)¥-1 J<i, 66
F1=1+C3322’J_2¢)_2J, (53) 3 ( ) (7/) 2 ( )

— -1 -2
and the asymptotic solution far,(t) at t>1 az(t)=(Ct) (I t) " “exp(—x4)
3C Xs=k(ClInt)~t J=1, (67)
a2=azw—w—_l(71t)l_2J+"' , (54) _ _ ) _
and whenJ>1/2, the nonscaling solution fok--clusters is
similar to Eq.(56).
p=1+ } fm{l—[F(V)— 1] 1dv. (55) These gpproximatior) results coinc_:ide with those ot?tqined
3 ), by numerical computation to a certain degree of precision.
All preceding calculations for cas®) and cas€gC) are
Thus, we have a scaling solution fa- and A®-clusters as  performed under the condition in which the value of every
Eq. (400 and the following nonscaling solution for is greater than zero. When allare less than zero, the evo-
AZ-clusters: lution behaviors of the\? species are scaling and the behav-
iors of A* and A® species are scaling or nonscaling, depend-
3Cyy(yit) > ing on the rate of the annihilation reaction. According to the
Ao p— 1) definition of y, the magnitude ofy corresponds to the differ-
ence of initial total mass among reactants. The effect of the
It turned out that a large annihilation rate results in a fastvalue of y on the evolution behavior of each species repre-
decay ofA%clusters and the scaling description for the evo-sents one of initial total mass. Therefore, we conclude that
lution behavior ofA-clusters breaks down completely. for a system with a three-species aggregation-annihilation
(©) e;#Far# 3. In the general asymmetrical case, Egs.reaction, the kinetic behaviors of the system depend conclu-
(18) and(19) are still satisfied exactly, but one cannot find ansively on the aggregation rate, annihilation rate, and the ini-
exact analytical solution fos;, «,, andagz. When the initial  tial mass distribution of each reactant.
masses oA’ species and\? speciesA;, andAs,, are much

1 k
ag(t)= 1- —) . (56)

ap

the same, one can imagine that speéiéss divided into two 1. MANY SPECIES AGGREGATION-ANNIHILATION

parts. One part reacts with speci@Sand another with spe- MODEL WITH CONSTANT REACTION RATE

cies A3, If we again assume thatAgy+ Azy— A0 >0, Eq.

(18) can be recasted into the following two equations: We suppose that there amedistinct species in a system.

Each species aggregates itself, and any two kinds of distinct
ar—ejar,=(Ap—eAypt+1l—eq, (57 species annihilate each other. We assume again all aggrega-
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tion rates are equal to one and all annihilation rates are equal

to J. If n cluster-mass distributions are denoted dyy, (I

=1,2,..n) the rate equations for the species are given by

da.|k ”
—— =2, a;a;—2a ai
dt Z 1i A j ijzl 1j
n 0
+‘]E 2 a-Ipa-mq_alklz amj )
=1 \p=q+k =1
m#l, 1=1,2,...n, m=12,...n. (68)
For the monodisperse initial conditions
a(0)=A b, Ap=const, [=1.2,...n, (69
Egs.(68) can be reduced in terms of ansatz
a=A(a)t 1=12,...n (70
Introducing new variables
a=(1-a)" ! 1=12,...n, (72)
into Egs.(70), yields
d?a B " J da, dey,
d? =~ &1 ajtap,—1 dt dt’
m#l, 1=1,2,...n, (72
with initial conditions
dCY|
a=1, _:AIO at t=0. (73)
dt
One can easily obtain one integral of E¢g2)
da| _
II =11 Aoll Il (e +an-1)72% (74
[ [ rm

but cannot find eachwy, as an explicit function of time in
general.

Now, we consider the symmetrical case, i8g=A,
o=« for all 1. The solutions ofa(t) and a,(t) for each
species are, respectively,
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a(t)=1(1+¥), (75)

W)t
a(t)=4A(1+W¥) 2@ - (n-127 T (76)
V={1+[2+(n—1)J]Agt}[Z2+(n=1)J] (77

At long time limit the concentration is

a(t)=4Aq{[2+ (n—1)J] Aot} 17122+ (0= Dleyy —x),
(78)

It is valid in the scaling region

k>1, t>1,

x=2k{[2+ (n—1)J]Aot} 122 (""1l=(finite). (79)

Settingn=2, one obtains the solution for a symmetrical case
in Ref.[23]. Whenn=3, we have exponents

2+ 1

W=1r3 “Tixg ML om0 60
Comparing the exponents in Eq86) and(80), one can see
that these exponents, exceptare all dependent on the re-
action rate, and for a given value &f the value ofZ in Eq.
(36) is greater tharz in Eq. (80) and the value ofu in Eq.
(36) is less thanu in Eqg. (80). These differences among
exponents represent the effect of different annihilation reac-
tion models on the kinetic evolution behaviors of aggregates.
In the general three-species aggregation-annihilation model,
annihilation reaction occurs between any two distinct spe-
cies. While in the special three-species aggregation-
annihilation model in Sec. Il, there is no annihilation reaction
between theA® species and\® species. It turns out that the
characteristic mass of clusters for each species in the general
three-species aggregation-annihilation model increases
slowly and the total mass of all clusters decayes faster than
in the special three-species aggregation-annihilation model.
For general asymmetric cases, it is difficult to find an
analytical solution for each cluster concentration. The nu-
merical computation for a system with three species or four
species show that the kinetic behaviors of the system are
very sensitive to the value of the reaction rate and the initial
mass distribution.
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